Screening of CMAS corrosion-resistant RE2SiO5 for environmental barrier coating application by a high-throughput multilayer stacking method

Liya Zheng, Keyu Ming, Zhilin Tian

Extreme Materials ›› 2025, Vol. 1 ›› Issue (4) : 27-32.

PDF(7824 KB)
PDF(7824 KB)
Extreme Materials ›› 2025, Vol. 1 ›› Issue (4) : 27-32. DOI: 10.1016/j.exm.2025.10.001

作者信息 +

Screening of CMAS corrosion-resistant RE2SiO5 for environmental barrier coating application by a high-throughput multilayer stacking method

Author information +
文章历史 +

Abstract

High-temperature corrosion caused by low-melting-point molten salts known as CMAS poses a critical challenge to hot-section components in gas turbine engines. The screening of CMAS corrosion-resistant RE2SiO5 ceramics is crucial for the development of environmental barrier coatings for SiC fiber reinforced SiC composites. Due to varying experimental methods, conditions, and CMAS corrosion evaluation approaches, there has been some controversy regarding the CMAS resistance of RE2SiO5 ceramics. To address this issue, we employed a highthroughput multilayer stacking method to eliminate external influences such as experimental conditions. The CMAS resistance of several rare earth silicate ceramics was investigated, which revealed the influence of rare earth elements on CMAS corrosion. It was found that the smaller the rare earth ionic radius, the less corrosion product formed. Additionally, Er2SiO5 exhibited the best CMAS resistance due to the shallowest penetration depth of CMAS. The results indicate that the evaluation of CMAS corrosion resistance of RE2SiO5 ceramics requires a comprehensive consideration of the formation ability of corrosion products, dissolution of RE2SiO5, and the penetration of CMAS.

Key words

High-throughput screening / Environmental barrier coating / Rare earth silicate / CMAS corrosion / Multilayer stacking

引用本文

导出引用
Liya Zheng, Keyu Ming, Zhilin Tian. [J]. Extreme Materials. 2025, 1(4): 27-32 https://doi.org/10.1016/j.exm.2025.10.001
Liya Zheng, Keyu Ming, Zhilin Tian. Screening of CMAS corrosion-resistant RE2SiO5 for environmental barrier coating application by a high-throughput multilayer stacking method[J]. Extreme Materials. 2025, 1(4): 27-32 https://doi.org/10.1016/j.exm.2025.10.001

参考文献

[1]
J.G. Zhang, G.F. Han, X.X. Cao, X.F. Zhang, J.D. Zhang, M. Liu, K.S. Zhou, Regulating the composition, structure, and nanoscale dimensions of Yb2Si2O7 environmental barrier coating to achieve a biomimetic teakwood-like functional structure by waste gas recycling, J. Adv. Ceram. 14 (2) ( 2025) 9221021.
[2]
H.B. Schonfeld, M. Milich, C. Miller, L. Doumaux, M. Ridley, T. Pfeifer, W. Riffe, D. Robba, L. Vlahovic, K. Boboridis, R.J.M. Konings, A. Chamberlain, E. Opila, P.E. Hopkins, Melting temperature, emissivity, and thermal conductivity of rare-earth silicates for thermal and environmental barrier coatings, Scr. Mater. 259 ( 2025) 116576.
[3]
W.K. Fan, X. Yang, H.H. Li, Y. Li, J.T. Li, Pressureless sintering of pressureless sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 high-entropy ceramic and its high temperature CMAS corrosion resistance, J. Inorg. Mater. 40 (2) ( 2025) 159-167.
[4]
L.R. Turcer, N.P. Padture, Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics, Scr. Mater. 154 ( 2018) 111-117.
[5]
Z.L. Chen, X.W. Lai, Y.T. Liang, L.X. Qu, Z.L. Tian, B. Li, Progress in the degradation of thermal and environmental barrier coating materials caused by calcium-mag-nesium-aluminum-silicate deposit, Extrem. Mater. 1 (1) ( 2025) 9-37.
[6]
Z.L. Tian, K.Y. Ming, L.Y. Zheng, Z.L. Chen, F. Zhou, P. Liu, Z.H. Qiu, D.H. Wei, B. Li, J.Y. Wang, In-situ observation and mechanism of calcium-magnesium-alu-mina-silicate (CMAS) melts-induced degradation of RE2SiO5(RE=Tb, Dy,Ho,Y, Er, Tm, and Yb) ceramics at 1500 C, J. Adv. Ceram. 12 (12) ( 2023) 2315-2330.
[7]
S.J. Meng, L. Guo, H.B. Guo, Y.P. Wang, H.L. Liu, CMAS-phobic and infiltrationinhibiting protective layer material for thermal barrier coatings, J. Adv. Ceram. 13 (8) ( 2024) 1254-1267.
[8]
M.Z. Ren, L. Dong, G.J. Yang, Research progress on material and structure optimization of environmental barrier coatings, J. Chin. Soc. Corros. Prot. 45 (1) ( 2025) 33-45.
[9]
G. Cao, Y.H. Wang, Z.Y. Ding, Z.G. Liu, J.H. Ouyang, Y.M. Wang, Y.J. Wang, CMAS hot corrosion behavior of rare-earth silicates for environmental barrier coatings applications: a comprehensive review, Heat. Treat. Surf. Eng. 3 (1) ( 2021) 9-28.
[10]
B. Qian, Y. Wang, J.H. Zu, K.Y. Xu, Q.Y. Shang, Y. Bai, A review on multicomponent rare earth silicate environmental barrier coatings, J. Mater. Res. Tech. 29 ( 2024) 1231-1243.
[11]
S. Sarkar, R. Rahul, B.P. Majee, K. Bryce, L. Zhang, L.P. Huang, J. Lian, S. De, Fracture characteristics of rare-earth phosphate and silicate environmental barrier coatings under molten CMAS corrosion, Sci. Rep. 15 (1) ( 2025) 12943.
[12]
Z.Y. Chen, Y.L. Huang, Z.X. Zhang, W. Zheng, X.M. Song, Y.R. Niu, Y. Zeng, Investigation of improving the thermophysical properties and corrosion resistance of RE2SiO5/RE2Si2O7 multiphase silicates by component design with RE doping, J. Adv. Ceram. 13 (6) ( 2024) 842-860.
[13]
G. Costa, B.J. Harder, N.P. Bansal, B.A. Kowalski, J.L. Stokes, Thermochemistry of calcium rare-earth silicate oxyapatites, J. Am. Ceram. Soc. 103 (2) ( 2020) 1446-1453.
[14]
G. Cao, S.Q. Wang, Y.H. Wang, Z.Y. Ding, Z.G. Liu, J.H. Ouyang, Y.M. Wang, Y.J. Wang, Growth kinetics of apatite layer evolved from calcia-magnesia-aluminosilicate (CMAS) hot corrosion reaction of (Y1-xYbx)2SiO5 ceramics at elevated temperatures of 1673 k and 1773 k, J. Eur. Ceram. Soc. 43 (2) ( 2023) 600-611.
[15]
K.M. Grant, S. Krämer, G.G.E. Seward, C.G. Levi, Calcium-magnesium aluminosilicate interaction with yttrium monosilicate environmental barrier coatings, J. Am. Ceram. Soc. 93 (10) ( 2010) 3504-3511.
[16]
W.D. Summers, D.L. Poerschke, A.A. Taylor, A.R. Ericks, C.G. Levi, F.W. Zok, Reactions of molten silicate deposits with yttrium monosilicate, J. Am. Ceram. Soc. 103 (4) ( 2020) 2919-2932.
[17]
B.K. Jang, F.J. Feng, K. Suzuta, H. Tanaka, Y. Matsushita, K.S. Lee, S. Ueno, Corrosion behavior of volcanic ash and calcium magnesium aluminosilicate on Yb2SiO5 environmental barrier coatings, J. Ceram. Soc. Jpn. 125 (4) ( 2017) 326-332.
[18]
M. Wolf, D.E. Mack, O. Guillon, R. Vaßen, Resistance of pure and mixed rare earth silicates against calcium-magnesium-aluminosilicate (CMAS): a comparative study, J. Am. Ceram. Soc. 103 (12) ( 2020) 7056-7071.
[19]
J.Y. Feng, J. Wu, L. Guo, H.X. Guo, Finite element analysis on temperature field and stress distribution of thermal barrier coatings by laser modification and CMAS corrosion, Corros. Commun. 6 ( 2022) 29-39.
[20]
X.M. Zhang, H. Xin, L. Guo, Crystallization behavior of calcium-magnesium-alu-mina-silicate coupled with NaCl/Na2SO4, Corros. Commun. 10 ( 2023) 1-9.
[21]
D.L. Poerschke, R.W. Jackson, C.G. Levi, Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions, Annu. Rev. Mater. Res. 47 ( 2017) 297-330.
[22]
X. Wang, M.Y. Meng, F.H. Xu, L. Liu, L.H. Gao, S.Z. Zhu, Z. Ma, Lu1/7Yb1/7Sc1/7Er1/ 7Y1/7Ho1/7Dy1/7)2Si2O7 high entropy rare-earth disilicate with low thermal conductivity and excellent resistance to CMAS corrosion, J. Adv. Ceram. 13 (5) ( 2024) 549-560.
[23]
M.Z. Ren, L. Dong, G.J. Yang, Research progress on material and structure optimization of environmental barrier coatings, J. Chin. Soc. Corros. Prot. 45 (1) ( 2025) 33-45.
[24]
L.L. Xi, S.S. Pan, X. Li, Y.G. Xu, J.Y. Ni, X. Sun, J. Yang, J. Luo, J.Y. Xi, W.H. Zhu, X.R. Li, D. Jiang, R. Dronskowski, X. Shi, G.J. Snyder, W.Q. Zhang, Discovery of High-Performance thermoelectric chalcogenides through reliable High-Throughput material screening, J. Am. Chem. Soc. 140 (34) ( 2018) 10785-10793.
[25]
B. Wang, D.L. Cai, Q.S. Zhu, D.X. Li, Z.H. Yang, X.M. Duan, Y.N. Li, X. Wang, D.C. Jia, Y. Zhou, Mechanical properties and thermal shock resistance of SrAl2Si2O8 reinforced BN ceramic composites, J. Inorg. Mater. 39 (10) ( 2024) 1182-1188.
[26]
Z.L. Tian, L.Y. Zheng, J.M. Wang, P. Wan, J.L. Li, J.Y. Wang, Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5(RE=Tb,Dy,Ho,Er,Tm,Yb,Lu, and Y) for environmental and thermal barrier coating applications, J. Eur. Ceram. Soc. 36 (1) ( 2016) 189-202.

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52202078 and 52202126).


PDF(7824 KB)

Accesses

Citation

Detail

段落导航
相关文章

/