Review
Yuxuan Liu, Hui Wang, Jianchao Hao, Yuan Cheng, Shun Dong, Ping Hu, Wenbo Han, Xinghong Zhang
With the advancement of hypersonic vehicles, extreme high temperature environments have imposed increasingly stringent requirements on the performance of thermal protection systems. Consequently, the development of high-performance thermal protection materials capable of withstanding extreme conditions has become a primary focus of current research. Ultra-high temperature ceramics (UHTCs) and their composites, known for their excellent oxidation resistance and ablation performance, are regarded as highly promising non-ablative thermal protection materials. This paper provides a systematic review of recent research progress on UHTC composites in several key areas, including innovations and optimizations in fabrication processes, exploration of toughening strategies and mechanisms, in-depth studies on oxidation and ablation resistance mechanisms, and the development and potential applications of high-entropy ceramics. Furthermore, the paper discusses the practical application prospects of UHTCs and their composites in extreme environments, analyzes the current technical challenges, and proposes future research directions and priorities.