Figure/Table detail

Recent Advances in High-entropy Ceramics: Design Principles, Structural Characteristics, and Emerging Properties
Yiran Li, Donghui Pan, Jiehui Cao, Wenhui Fang, Yiwang Bao, Bin Liu
Extreme Materials, DOI: 10.1016/j.exm.2025.05.002

Symbol Name Definitional Formula Physical Meaning Ref
ΔSmix Mixed entropy $\Delta S_{mix}=−R_{i}\sum c_{i}lnc_{i}$ ci is the content of different components. [71]
ΔHmix Enthalpy of mixing $ΔH_{mix}=E_{HEC}-\sum c_{i}E_{i}$ The sum of the interaction energy differences in the ideal state. [72]
Ω Entropy-enthalpy balance factor $Ω=\frac{T_{m}\Delta S_{mix}}{|\Delta H_{mix}|}$ Tₘ is the isothermal temperature. [73]
δ Atomic (ion) radius difference $δ=\sqrt{\sum_{i}c_{i}(1-\frac{r_{i}}{\overline{r}})^2}, \overline{r}=\sum_{i}c_{i}r_{i}$ Contribution of differences in atomic/ionic radii of components to lattice distortion [74]
Δχ Electronegativity difference $\Delta\chi =\sqrt{\sum_{i}c_{i}(\chi_{i}-\overline{\chi})^2}$, $\overline{\chi}=\sum_{i}c_{i}\chi_{i}$ Δχ reflects the difference in electronegativity between different elements. [75]
VEC Valence electron concentration $VEC=\sum_{i}(valence\quad electrons \quad of \quad i)$ Reflects the degree of electron filling and energy band structure characteristics of the system [74]
DEED Disordered Enthalpy-Entropy Descriptor $DEED=\sqrt{\frac{\sigma_{\Omega}^{-1} [H_{f}]}{<\Delta H_{hull}>_\Omega}}$ Predicting the possibility of single-phase disordered structures in multicomponent systems, Hf and Hfull are the DFT formation energies of the partial occupation POCC tiles and the convex hull, respectively. [76]
EFA Entropy forming ability $EFA=(\sqrt{\frac{\sum_{i=1}^{n}g_{i}(H_{i}-H_{mix})^2} {\sum_{i=1}^{n}g_{i}-1}})^{-1}$ Entropy-driven formation of stable single-phase solid solutions, where n is the total number of sampled geometrical configurations and gi are their degeneracies. Hi of the sampled configurations. [66]
LDI lattice distortion index $LDI=\sum_{i=1}^{n}\sqrt{(x_{i,a}-x_{i,0})^{2}+(y_{i,a}-y_{i,0})^{2}+(z_{i,a}-z_{i,0})^{2}/n}$ Parameters for the degree of lattice distortion in disordered systems, (x, y) is the atomic position. [77]
γ The normalized geometric packing parameter for the metallic sublattice calculated $\gamma =(1-\sqrt{1-\frac{(r_{s}+\overline{r})^{2}-\overline{r}^2}{(r_{s}+\overline{r})^2}})/(1-\sqrt{1-\frac{(r_{L}+\overline{r})^{2}-\overline{r}^2}{(r_{L}+\overline{r})^2}})$ Evaluating how different metal atoms stack together in a crystal lattice, where rs and rL are the radii of the smallest and largest atoms. [78]
Table 1. Parameters and Descriptors Related to Theoretical Design
Other figure/table from this article