Figure/Table detail

Recent Advances in High-entropy Ceramics: Design Principles, Structural Characteristics, and Emerging Properties
Yiran Li, Donghui Pan, Jiehui Cao, Wenhui Fang, Yiwang Bao, Bin Liu
Extreme Materials, DOI: 10.1016/j.exm.2025.05.002

Categories Materials Key Findings Ref
Mechanical (Al1/6Cr1/6Nb1/6TaTi1/3)O2 elastic modulus (275.24 ± 32.26 GPa)
H = 13.58 ± 2.05 GPa
[197]
HE TM0.8Sc0.2B2
HE TM0.75Sc0.25B2

HE TM0.75Lu0.25B2
B = 254 GPa
G = 237 GPa
E = 539GPa
ν = 0.983
[198]
(HfMoNbTaTi)C μ = 0.1
low friction and wear (0.1 and 10 7 mm3/Nm)
H = 18.7 GPa
[199]
(WTaNbZrTi)C H = 21.0 GPa
KIC = 5.89 MPa·m1/2
[14]
(CeZrLaSmNdY)O2-δ KIC = 8.07 MPa·m1/2 [96]
((ZrHfCeYEr)(1-x)/5Tix)O2-δ elastic modulus (205 GPa), H = 14 GPa,
RSR = 97.56 % and 83.36 % (After 60 thermal shock cycles at 1200°C and 1500°C)
[200]
(TiTaNbZr)C KIC = 6.93 ± 0.27 MPa·m1/2
flexural strength (541 ± 48 MPa)
[13]
Thermal ((ZrHfCeYEr)(1-x)/5Tix)O2-δ κ=1.34 W/(m·K) (at 1100°C) [200]
Ce1−2x(NdSm)x(VNbTa)1/3O4+δ ΔR/R0 = 0.23% at 873K for 1000 h [201]
(SrCaLaBa)1-xTiOδ (0 < x ≤ 0.125) ZT = 0.24
lattice thermal conductivity of 2.54 W/(m·K) at 1073 K
[202]
001-textured (LaSrBaCa)0.85TiO3 ZT = 0.13
κ= 1.79 W/(m·K) at 1073 K
[203]
Zr0.279(Y0.0708Yb0.0302Ta0.0329Nb0.0402)O0.5469 κ= 1.55 W/(m·K) at 1200 K
CTE = 10.6 ~ 10.9 × 10-6K-1 (at 1400℃)
[204]
(LaNdSmEuGd)CrO3 ΔR/R0 = 4.5% following 1000 h of aging [205]
Electircal Pr0.2Sm0.2Nd0.2Gd0.2La0.2BaCo2O5+δ maximum power density of 2.03 W/cm2 [206]
Ba0.95K0.05Co0.2Zn0.2Ga0.2Zr0.2Y0.2O3−δ PPD = 1.33 W/cm2 [207]
LiNi0.8Co0.15Al0.05O2 Coulombic efficiencies of Li-ion batteries over 99.9% [208]
(MgTiZnCuF)3O4 Reversible capacity of 504 mA h/g [209]
La0.2Pr0.2Nd0.2Sm0.2Ba0.1Sr0.1Co0.2Fe0.6Ni0.1Cu0.1O3-δ Electrical conductivity 635.15 S/cm at 800°C [210]
[(Bi,Na)(La,Li)(Ce,K)CaSr]TiO3 Initial discharge capacity of 125.9 mA h/g [211]
Catalytic (FeMnCoNiCr)3O4 PPD = 1.33 W/cm2 at solid oxide fuel cells [33]
(TiVCrMo)B2 FE = 97.9% (at hydrogenation process of NO3-RR) [212]
La2(CoNiMgZnNaLiRuO6 overpotential of 40.7 mV at 10 mA/cm2 [21]
(FeCoNiCuZn)3O4 HER (η = 207 mV at 10 mA/cm2)
OER (η = 347 mV at 10 mA/cm2)
[20]
Ru0.13/Ba0.3Sr0.3Bi0.4(ZrHfTiFe)O3 51% CO conversion at 90°C within time of less than 1 s [49]
Magnetic (CrMnFeCoNi)3O4 TC > 873 k [35]
(MgZnMnCoNiFe)3O4 ferrimagnetic behavior with a saturation magnetization of 22 emu/g at 2 K and 7.2 emu/g at 300 K [213]
LaCr0.2Mn0.2Fe0.2Al0.2Ga0.2O3 Magnetic behavior driven by competing interactions among Cr, Mn, and Fe sublattices [34]
(LaNdSmGd)1-xYbxMnO3 Mr/Ms ≈ 0.42 at 5 K [56]
Dielecttic SrLa(Al0.50−xGaxZn0.125Mg0.125Ti0.25)O4 Qf = 98,000 GHz
τf = −2.0 ppm/°C
[214]
(MgCoNiCuZn)O, Output voltage 525 V of the droplet electricity generator [215]
(1-x)[0.6(Bi0.47Na0.47Yb0.03Tm0.01)TiO3-0.4
(BaSr)TiO3]xSr(ZrHf)O3
Wrec = 10.46 J/cm3 (at 685 kV/cm)
PD = 332.88 MW/cm3
[216]
0.8Na0.5Bi0.5TiO3-0.2Sr(ZrSnHfTiNb)O3 high εr> 2000 at 150°C and low tandδ (< 0.01, 90 - 341°C) [217]
0.91(0.9Ba(Ti0.97Ca0.03)O3-0.1Bi0.55Na0.45
TiO3)-0.09Bi(LiYMgTiTa)O3
Wrec = 4.89 J/cm3, g = 91.2% [218]
Table 5. Summary of properties of high-entropy ceramics.
Other figure/table from this article