Categories | Materials | Key Findings | Ref |
---|---|---|---|
Mechanical | (Al1/6Cr1/6Nb1/6TaTi1/3)O2 | elastic modulus (275.24 ± 32.26 GPa) H = 13.58 ± 2.05 GPa | [ |
HE TM0.8Sc0.2B2 HE TM0.75Sc0.25B2 HE TM0.75Lu0.25B2 | B = 254 GPa G = 237 GPa E = 539GPa ν = 0.983 | [ | |
(HfMoNbTaTi)C | μ = 0.1 low friction and wear (0.1 and 10 7 mm3/Nm) H = 18.7 GPa | [ | |
(WTaNbZrTi)C | H = 21.0 GPa KIC = 5.89 MPa·m1/2 | [ | |
(CeZrLaSmNdY)O2-δ | KIC = 8.07 MPa·m1/2 | [ | |
((ZrHfCeYEr)(1-x)/5Tix)O2-δ | elastic modulus (205 GPa), H = 14 GPa, RSR = 97.56 % and 83.36 % (After 60 thermal shock cycles at 1200°C and 1500°C) | [ | |
(TiTaNbZr)C | KIC = 6.93 ± 0.27 MPa·m1/2 flexural strength (541 ± 48 MPa) | [ | |
Thermal | ((ZrHfCeYEr)(1-x)/5Tix)O2-δ | κ=1.34 W/(m·K) (at 1100°C) | [ |
Ce1−2x(NdSm)x(VNbTa)1/3O4+δ | ΔR/R0 = 0.23% at 873K for 1000 h | [ | |
(SrCaLaBa)1-xTiO3±δ (0 < x ≤ 0.125) | ZT = 0.24 lattice thermal conductivity of 2.54 W/(m·K) at 1073 K | [ | |
-textured (LaSrBaCa)0.85TiO3 | ZT = 0.13 κ= 1.79 W/(m·K) at 1073 K | [ | |
Zr0.279(Y0.0708Yb0.0302Ta0.0329Nb0.0402)O0.5469 | κ= 1.55 W/(m·K) at 1200 K CTE = 10.6 ~ 10.9 × 10-6K-1 (at 1400℃) | [ | |
(LaNdSmEuGd)CrO3 | ΔR/R0 = 4.5% following 1000 h of aging | [ | |
Electircal | Pr0.2Sm0.2Nd0.2Gd0.2La0.2BaCo2O5+δ | maximum power density of 2.03 W/cm2 | [ |
Ba0.95K0.05Co0.2Zn0.2Ga0.2Zr0.2Y0.2O3−δ | PPD = 1.33 W/cm2 | [ | |
LiNi0.8Co0.15Al0.05O2 | Coulombic efficiencies of Li-ion batteries over 99.9% | [ | |
(MgTiZnCuF)3O4 | Reversible capacity of 504 mA h/g | [ | |
La0.2Pr0.2Nd0.2Sm0.2Ba0.1Sr0.1Co0.2Fe0.6Ni0.1Cu0.1O3-δ | Electrical conductivity 635.15 S/cm at 800°C | [ | |
[(Bi,Na)(La,Li)(Ce,K)CaSr]TiO3 | Initial discharge capacity of 125.9 mA h/g | [ | |
Catalytic | (FeMnCoNiCr)3O4 | PPD = 1.33 W/cm2 at solid oxide fuel cells | [ |
(TiVCrMo)B2 | FE = 97.9% (at hydrogenation process of NO3-RR) | [ | |
La2(CoNiMgZnNaLiRuO6 | overpotential of 40.7 mV at 10 mA/cm2 | [ | |
(FeCoNiCuZn)3O4 | HER (η = 207 mV at 10 mA/cm2) OER (η = 347 mV at 10 mA/cm2) | [ | |
Ru0.13/Ba0.3Sr0.3Bi0.4(ZrHfTiFe)O3 | 51% CO conversion at 90°C within time of less than 1 s | [ | |
Magnetic | (CrMnFeCoNi)3O4 | TC > 873 k | [ |
(MgZnMnCoNiFe)3O4 | ferrimagnetic behavior with a saturation magnetization of 22 emu/g at 2 K and 7.2 emu/g at 300 K | [ | |
LaCr0.2Mn0.2Fe0.2Al0.2Ga0.2O3 | Magnetic behavior driven by competing interactions among Cr, Mn, and Fe sublattices | [ | |
(LaNdSmGd)1-xYbxMnO3 | Mr/Ms ≈ 0.42 at 5 K | [ | |
Dielecttic | SrLa(Al0.50−xGaxZn0.125Mg0.125Ti0.25)O4 | Qf = 98,000 GHz τf = −2.0 ppm/°C | [ |
(MgCoNiCuZn)O, | Output voltage 525 V of the droplet electricity generator | [ | |
(1-x)[0.6(Bi0.47Na0.47Yb0.03Tm0.01)TiO3-0.4 (BaSr)TiO3]xSr(ZrHf)O3 | Wrec = 10.46 J/cm3 (at 685 kV/cm) PD = 332.88 MW/cm3 | [ | |
0.8Na0.5Bi0.5TiO3-0.2Sr(ZrSnHfTiNb)O3 | high εr> 2000 at 150°C and low tandδ (< 0.01, 90 - 341°C) | [ | |
0.91(0.9Ba(Ti0.97Ca0.03)O3-0.1Bi0.55Na0.45 TiO3)-0.09Bi(LiYMgTiTa)O3 | Wrec = 4.89 J/cm3, g = 91.2% | [ |